Meta-Transfer Learning through Hard Tasks
Qianru Sun*, Yaoyao Liu*, Zhaozheng Chen, Tat-Seng Chua, and Bernt Schiele, Fellow, IEEE

Abstract—Meta-learning has been proposed as a framework to address the challenging few-shot learning setting. The key idea is
to leverage a large number of similar few-shot tasks in order to learn how to adapt a base-learner to a new task for which only a
few labeled samples are available. As deep neural networks (DNNs) tend to overfit using a few samples only, typical meta-learning
models use shallow neural networks, thus limiting their effectiveness. In order to achieve top performance, some recent works tried
to use the DNNs pre-trained on large-scale datasets but mostly in straight-forward manners, e.g., (1) taking their weights as a warm
start of meta-training, and (2) freezing their convolutional layers as the feature extractor of base-learners. In this paper, we propose a
novel approach called meta-transfer learning (MTL), which learns to transfer the weights of a deep NN for few-shot learning tasks.
Specifically, meta refers to training multiple tasks, and transfer is achieved by learning scaling and shifting functions of DNN weights
(and biases) for each task. To further boost the learning efficiency of MTL, we introduce the hard task (HT) meta-batch scheme as an
effective learning curriculum of few-shot classification tasks. We conduct experiments for five-class few-shot classification tasks on three
challenging benchmarks, minilmageNet, tieredimageNet, and Fewshot-CIFAR100 (FC100), in both supervised and semi-supervised
settings. Extensive comparisons to related works validate that our MTL approach trained with the proposed HT meta-batch scheme

achieves top performance. An ablation study also shows that both components contribute to fast convergence and high accuracy.

Index Terms—few-shot learning, transfer learning, meta learning, image classification

1 INTRODUCTION

LTHOUGH deep learning systems have achieved great per-

formance when sufficient amounts of labeled data are avail-
able [1]-[3], there has been growing interest in reducing the
required amount of data. Few-shot learning tasks have been
defined for this purpose. The aim is to learn new concepts from a
handful of training examples, e.g., from 1 or 5 training images [4]—
[6]. Humans tend to be highly effective in this context, often
grasping the essential connection between new concepts and their
own knowledge, but it remains challenging for machine learning
models. For instance, on the CIFAR-100 dataset, a classification
model trained in the fully supervised mode achieves 76% accuracy
for the 100-class setting [7], while the best-performing 1-shot
model achieves only 45% in average for the much simpler 5-class
setting [6]. On the other hand, in many real-world applications,
we lack large-scale training data, as e.g., in the medical domain.
It is thus desirable to improve machine learning models in order
to handle few-shot settings.

Basically, the nature of few-shot learning with very scarce
training data makes it difficult to train powerful machine learning
models for new concepts. People explore a variety of methods in
order to overcome this. A straight-forward idea is to increase the
amount of available data by data augmentation techniques [8].
Several methods were proposed to learn a data generator e.g.
conditioned on Gaussian noises [9]-[11] or object attributes [12].
However, this data generator often under-performs when trained
on few-shot data, which has been investigated by [13]. An alterna-

e Qianru Sun is the corresponding author. gianrusun@smu.edu.sg. She and
Zhaozheng Chen are with the School of Information Systems, Singapore
Management University. Yaoyao Liu and Bernt Schiele are with the De-
partment of Computer Vision and Machine Learning, Max Planck Institute
for Informatics. Tat-Seng Chua is with the School of Computing, National
University of Singapore. This work was done during Yaoyao's internship
supervised by Qianru.

e *indicates equal contribution.

o The code is open-sourced at this link: https://github.com/yaoyao-liu/meta-
transfer-learning.

tive is to merge data from multiple tasks which, however, is often
ineffective due to high variances of the data across tasks [11].

In contrast to data augmentation methods, meta-learning is a
task-level optimization-based method [14]-[16]. It aims to transfer
experience from similar few-shot learning tasks [5], [6], [17]-[24].
Related methods follow a unified training process that contains
two loops. The inner-loop learns a base-learner for an individual
task, and the outer-loop then uses the validation performance of the
learned base-learner to optimize the meta-learner. A state-of-the-
art representative method named Model-Agnostic Meta-Learning
(MAML) learns to search for the optimal initialization state to
fast adapt a base-learner to a new task [5]. Its task-agnostic prop-
erty makes it possible to generalize to few-shot supervised/semi-
supervised learning as well as unsupervised reinforcement learn-
ing [5], [17], [18], [21], [22], [25]-[27]. However, in our view,
there are two main limitations of this type of approaches limiting
their effectiveness: i) these methods usually require a large number
of similar tasks for meta-training, which is costly; and ii) each task
is typically modeled by a low-complexity base-learner, such as a
shallow neural network (SNN), to avoid model overfitting to few-
shot training data, thus being unable to deploy the deeper and
more powerful architectures. For example, for the minilmageNet
dataset [28], MAML uses a shallow CNN with only 4 CONV
layers and its optimal performance was obtained by learning on
240k tasks (60k iterations in total and each meta-batch contains
4 tasks).

In this paper, we propose a novel meta-learning method called
meta-transfer learning (MTL) leveraging the advantages of both
transfer learning and meta-learning. In a nutshell, MTL is a novel
learning method that helps deeper neural networks based base-
learners converge faster while reducing their probability to overfit
when training on a few labeled data only. In particular, “transfer”
means that DNN weights trained on large-scale data can be used
in other tasks by two light-weight neuron operations: Scaling and
Shifting (SS), i.e. aX + (. “Meta” means that the parameters of
these SS operations can be viewed as hyper-parameters learned

with few-shot learning tasks [19], [29], [30]. First, large-scale
trained DNN weights offer a good initialization, enabling fast
convergence of MTL with fewer tasks, e.g., only 8k tasks for
minilmageNet [28], 30 times fewer than MAML [5]. Second,
light-weight operations on DNN neurons have less parameters
to learn, e.g., less than % if considering neurons of size 7 X 7
(i for a and < 4—19 for (3), reducing the chance of overfitting
to few-shot data. Third, these operations keep those trained DNN
weights unchanged and thus avoid the problem of “catastrophic
forgetting” which means forgetting general patterns when adapting
to a specific task [31], [32]. Finally, these operations are conducted
on the convolutional layers mostly working for image feature
extraction, thus can generalize well to a variety of few-shot learn-
ing models, e.g., MAML [5], MatchingNet [28], ProtoNet [33],
RelationNet [34] and SIB [24].

The second main contribution of this paper is an effective
meta-training curriculum. Curriculum learning [35] and hard nega-
tive mining [36] both suggest that faster convergence and stronger
performance can be achieved by better arrangements of training
data, i.e., the few-shot training tasks in our case. Inspired by these
ideas, we design our hard task (HT) meta-batch strategy to offer
a challenging but effective learning curriculum. The conventional
meta-batch contains a number of random tasks [5], but our HT
meta-batch online re-samples harder ones according to past failure
tasks with the lowest validation accuracy. In addition, we add
the meta-gradient regularization on each task that each task is
optimized by using the weighted sum of meta-gradients of both
current and previous tasks. The aim is to force the meta-learner
not to forget old knowledge in afterward learning.

Our overall contribution is thus three-fold: i) we propose
a novel MTL method that learns to transfer large-scale pre-
trained DNN weights for solving few-shot learning tasks; ii) we
propose a novel HT meta-batch learning strategy that forces
meta-transfer to “grow faster and stronger through hardship”; and
iii) we conduct extensive experiments on three few-shot learning
benchmarks, namely minilmageNet [28], tieredImageNet [26] and
Fewshot-CIFAR100 (FC100) [37], and achieve the state-of-the-
art performance on both supervised and semi-supervised few-shot
learning. Compared to the conference version of the paper [6],
this paper additionally presents (1) the analysis of using dif-
ferent DNN architectures and baseline methods (by plug-in), e.g.,
ResNet-12, ResNet-18, ResNet-25, and WRN-28-10; (2) the new
MTL variants that adapt our scaling and shifting functions to
the state-of-the-art supervised as well as semi-supervised meta-
learners, and achieve performance boosts consistently; (3) the
discussion of new related works since the conference version; and
(4) the results on the larger and more challenging benchmark —
tieredlmageNet [26].

2 RELATED WORK

Research literature on few-shot learning exhibits great diversity,
spanning from data augmentation [9]-[12] to supervised meta-
learning [5], [6], [16]-[18], [20]-[24], [38], [39]. In this paper, we
focus on the meta-learning based methods most relevant to ours
and compared to in the experiments. Besides, we borrow the idea
of transfer learning when leveraging the large-scale pre-training
step in prior to meta-transfer. For task sampling, our HT meta-
batch scheme is related to curriculum learning and hard negative
sampling methods.

2

Meta-learning. We can divide meta-learning methods into three
categories. 1) Metric learning methods [28], [33], [34], [40]-
[44] learn a similarity space in which learning is particularly
efficient for few-shot training examples. Examples of distance
metrics include cosine similarity [28], [44], [45], Euclidean dis-
tance to the prototypical representation of a class [33], CNN-
based relation module [34], ridge regression based [46], and
graph model based [47], [48]. Some recent works also tried to
generate task-specific feature representation for few-shot episodes
based on metric learning, like [40], [49] 2) Memory network
methods [29], [37], [44], [50], [51] learn to store “‘experience”
when learning seen tasks and then generalize it to unseen tasks.
The key idea is to design a model specifically for fast learning
with a few training steps. A family of model architectures use
external memory storage, including Neural Turing Machines [52],
Meta Networks [29], Neural Attentive Learner (SNAIL) [50], and
Task Dependent Adaptive Metric (TADAM) [37]. For test, general
meta memory and specific task information are combined to make
predictions in neural networks. 3) Gradient descent based meta-
learning methods [5], [6], [17], [18], [20]-[24], [39], [53] intend
for adjusting the optimization algorithm so that the model can
converge within a small number of optimization steps (with a few
examples). The optimization algorithm can be explicitly modeled
with two learning loops that outer-loop has a meta-learner that
learns to adapt an inner-loop base-learner (to few-shot examples)
through different tasks. For example, Ravi ef al. [39] introduced a
method that compresses the base-learners’ parameter space in an
LSTM meta-learner. Rusu et al. [25] designed a classifier genera-
tor as the meta-learner which outputs parameters for each specific
base-learning task. Finn et al. [5] proposed a meta-learner called
MAML that learns to effectively initialize a base-learner for a new
task. Lee et al. [53] proposed MT-net, where the meta-learner
determines a sub-space and a corresponding metric that task-
specific learners can learn in, thus setting the degrees of freedom
of task-specific learners to an appropriate amount. Lee et al. [23]
presented a meta-learning approach with convex base-learners
for few-shot tasks. Other related works in this category include
Hierarchical Bayesian model [18], Bilevel Programming [19], and
GAN based meta model [21]. Hu et al. [24] proposed to update
base-learner with synthetic gradients generated by a variational
posterior conditional on unlabeled data.

Among them, MAML is a fairly general optimization algo-
rithm, compatible with any model that learns through gradient
descent. Its meta-learner optimization is done by gradient descent
using the validation loss of the base-learner. It is closely related to
our MTL. An important difference is that MTL leverages transfer
learning and benefits from referencing neuron knowledge in pre-
trained deep nets. Although MAML can start from a pre-trained
network, its element-wise fine-tuning makes it hard to learn deep
nets without overfitting (validated in our experiments).

Transfer learning. Transfer learning or knowledge transfer has
the goal to transfer the information of trained models to solve
unknown tasks, thereby reducing the effort to collect new training
data. What and how to transfer are key issues to be addressed.
Different methods are applied to different source-target domains
and bridge different transfer knowledge [54]-[60]. For deep mod-
els, a powerful transfer method is adapting a pre-trained model
for a new task, often called fine-tuning (FT). Models pre-trained
on large-scale datasets have proven to generalize better than
randomly initialized ones [61]. Another popular transfer method

whole training phase

classifier fine-tuning final evaluation

[1 1

all-class
train samples

NHT
meta-batches

{Ti~k b1~

: Feature Extractor

Feature Extractor i

Basell . Meta-learner SSv
ase-learner i

D ' Base-learner FTn

(a) large-scale DNN training (b) meta-transfer learning

[

[1

unseen task
(test samples)

unseen task

(train samples) Feature Extractor

Meta-learner SSv
Base-learner FTwn+1

Feature Extractor

Meta-learner SSv — Acc.

) Tite)
unseen Base-learner FTn+1 unseen

(c) meta-test

Fig. 1. The pipeline of our proposed few-shot learning method, including: (a) DNN pre-training on large-scale data, i.e. using the entire training
dataset; and (b) meta-transfer learning (MTL) that learns the parameters of Scaling and Shifting (SS), on the basis of pre-trained feature extractor
(Section 4.1). The learning process is scheduled by the proposed HT meta-batch (Section 4.2) and regularized by meta-gradient regularization
(Section 4.3). In (c), it is meta-test on unseen task whose processing consists of a base-learner (classifier) Fine-Tuning (FT) stage and a final
evaluation stage, described in the last paragraph in Section 3. Input data are along with arrows. Modules with names in bold get updated at

corresponding phases.

is taking pre-trained networks as backbone and adding high-level
functions, e.g. for object detection [62] and image segmentation
[63], [64]. Besides, the knowledge to transfer can be from multi-
modal category models, e.g. the word embedding models used for
zero-shot learning [12], [65] and trained attribute models used for
social relationship recognition [58].

In this paper, our meta-transfer learning leverages the idea of
transferring pre-trained weights and our model meta-learns how to
effectively transfer. The large-scale trained DNN weights are what
to transfer, and the operations of Scaling and Shifting indicate how
to transfer. Some existing few-shot learning methods [25], [50],
[66]-[68] also deployed pre-trained DNNs. DNN weights in these
methods are usually fixed for feature extraction or simply fine-
tuned on each task. In contrast, our approach defines an explicit
meta-learner to extract and apply usable knowledge of pre-learned
DNNss to tackling the challenging few-shot learning tasks.

Curriculum learning & hard sample mining. Curriculum learn-
ing was proposed by Bengio et al. [35] and is popular for multi-
task learning [69]-[71]. They showed that instead of observing
samples at random it is better to organize samples in a meaningful
way so that fast convergence, effective learning and better gener-
alization can be achieved. Kumar et al. [72] introduced an iterative
self-paced learning algorithm where each iteration simultaneously
selects easy samples and learns a new parameter vector. Intuitively,
the curriculum is determined by the pupil’s abilities rather than
being fixed by a teacher. Pentina et al. [73] use adaptive SVM
classifiers to evaluate task difficulty for later organization. Most
recently, Jiang et al. [74] designed a MentorNet that provides
a “curriculum”, i.e., sample weighting scheme, for StudentNet
to focus on the labels which are probably correct. The trained
MentorNet can be directly applied for the training of StudentNet
on a new dataset. Differently, our MTL method does task difficulty
evaluation online at the phase of test in each task, without needing
any auxiliary model.

Hard sample mining was proposed by Shrivastava et al. [36]
for object detection with DNNGs. It treats image proposals over-
lapped with ground truth (i.e., causing more confusion) as hard
negative samples. Training on more confusing data enables the
detection model to achieve higher robustness and better perfor-
mance [75]-[77]. Inspired by this, we sample harder tasks online
and make our MTL learner “grow faster and stronger through
more hardness”. In our experiments, we show that this can be
generalized to different architectures with different meta-training
operations, i.e. SS and FT, referring to Figure 4.

3 PRELIMINARY

In this section, we briefly introduce the unified episodic formula-
tion in meta-learning, following related works [5], [25], [28], [37],
[39]. Then, we introduce the task-level data denotations used at
two phases, i.e., meta-train and meta-test.
Meta-learning has an episodic formulation that was proposed for
tackling few-shot tasks first in [28]. It is different from traditional
image classification, in three aspects: (1) the main phases are
not train and test but meta-train and meta-test, each of which
includes training and testing; (2) the samples in meta-train and
meta-test are not datapoints but episodes, and each episode is a
few-shot classification task; and (3) the objective is not classifying
unseen datapoints but to fast adapt the meta-learned experience or
knowledge to the learning of a new few-shot classification task.
The denotations of two phases, meta-train and meta-test, are as
follows. A meta-train example is a classification task 7~ sampled
from a distribution p(7). T is called episode, including a training
split T 1o optimize the base-learner, i.e., the classifiers in our
model, and a test split 7(*¢) to optimize the meta-learner, i.e., the
scaling and shifting parameters in our model. In particular, meta-
train aims to learn from a number of episodes {7 } sampled from
p(T). An unseen episode Ty seen in meta-test will start from that
experience of the meta-learner and adapt the base-learner. The
final evaluation is done by testing a set of unseen datapoints in
heen.
Meta-train phase. This phase aims to learn a meta-learner from
multiple episodes. In each episode, meta-training has a two-stage
optimization. Stage-1 is called base-learning, where the cross-
entropy loss is used to optimize the parameters of the base-learner.
Stage-2 contains a feed-forward test on episode test datapoints.
The test loss (also called meta loss) is used to optimize the parame-
ters of the meta-learner. Specifically, given an episode T € p(7),
the base-learner 61 is learned from episode training data)
and its corresponding loss L7 (67, T(fr)). After optimizing this
loss, the base-learner has parameters 07. Then, the meta-learner
is updated using meta loss L7 (07,7 (*€)). After meta-training
on all episodes, the meta-learner is optimized by meta losses
{L7 (67, T))}rep(r)- Therefore, the number of meta-learner
updates equals to the number of episodes.
Meta-test phase. This phase aims to test the performance of the
trained meta-learner for fast adaptation to unseen episodes. Given
Tunseen, the meta-learner 6 teaches the base-learner 61, .. to
adapt to the objective of T, ,scen by some means, e.g. through
initialization [5]. Then, the test result on 'R(f,?em is used to
evaluate the meta-learning approach. If there are multiple unseen

W' Cx4x3x3 V': 1x4x1x1

T
. 1N
update

(a) Parameter-level Fine-Tuning (FT)

W:Cx4x3x3 b : Ix4x1x1

CX

DYy : CxaxIx1 Ps,: 1xdxix1

CX\ \
© +

b: 1x4x1x1

g

O, : Cxdxixl Ps,: 1x4x1x1

(vX} 3)

—_—
update

W: Cx4x3x3 b : 1x4x1x1

g

(b) Our Scaling Si and Shifting S:

W: Cx4x3x3

Fig. 2. Two kinds of meta operations on pre-trained weights. (a)
Parameter-level Fine-Tuning (FT) is a conventional meta-train operation
used in related works such as MAML [5], ProtoNets [33] and Relation-
Nets [34]. Its update works for all neuron parameters, W and b. (b) Our
neuron-level Scaling and Shifting (SS) operations in MTL. They reduce
the number of learning parameters and avoid overfitting problems. In
addition, they keep large-scale trained parameters (in yellow) frozen,
preventing “catastrophic forgetting” [31], [32].

episodes { Tunscen }» the average result on {7;(5{;)6@”} will be the
final evaluation.

4 METHODOLOGY

As shown in Figure 1, our method consists of three main training
phases in order to achieve effective few-shot classifiers. First, we
train a DNN on large-scale data, e.g., on minilmageNet with 64
classes and 600 samples per class [28], and then fix convolutional
layers as the Feature Extractor. Second, in the meta-transfer
learning phase, our MTL learns the Scaling and Shifting (SS)
parameters for the neurons of Feature Extractor, enabling the
fast adaptation to few-shot episodes (Section 4.1). To boost the
overall learning efficiency, we apply the HT meta-batch scheme
(Section 4.2) and the meta-gradient regularization (Section 4.3)
to the meta-train phase. The overall algorithm of our approach is
given in Section 4.4. Finally, in Section 4.5, we introduce how to
plug this algorithm into existing methods.

4.1 Meta-transfer learning (MTL)

During pre-training, we merge all data D and derive the many-
shot many-class model using the cross-entropy loss. The model is
composed of the Feature Extractor © and a many-class classifier.
The © keeps frozen in the following meta-training and meta-
test phases, as shown in Figure 1. The many-class classifier is
discarded, because few-shot episodes contain different classifica-
tion objectives, e.g., 5-class instead of 64-class classification for
minilmageNet [28].

As shown in Figure 1(b), our MTL optimizes only the meta
operations Scaling and Shifting (SS) through HT meta-batch train-
ing (Section 4.2). Figure 2 visualizes the difference of updating
through SS and FT (Fine-Tuning). SS operations, denoted as ® g,

4

and ®g,, do not change the frozen neuron weights of © during
learning, while FT updates the complete ©. Note that this FT is
distinct from the Base-learner FT (on).

In the following, we expand the details of SS operations
corresponding to Figure 1(b). Given an episode 7, the loss of
T is used to optimize the current base-learner (classifier) 6’ by
gradient descent:

0 — 06— BV@ET(tT) ([@; 9], CI)S{LQ}), (1)

where 6 concerns a few classes, e.g., 5 classes, to classify each
time in a novel few-shot setting. 6’ corresponds to a temporal
classifier working only in the current episode, initialized by the
optimized by previous episodes (see Eq. (3)).

®g, is initialized by ones and ®g, by zeros. Then, they are
optimized by the meta loss of 7€) as follows,

@Si = (I)Si - ’}/V<psi ,CT(f,e) ([@, 9/], @5{1’2}),7: = 1, 2. (2)
In this step, € is updated with the same learning rate +y as in Eq. (2),
0 =: 9_’YVOET(te)([@;0/]7¢S{1’2}). 3)

Re-linking to Eq. (1), we note that the above 6’ comes from the
last epoch of base-learning on T,

Next, we describe how we apply g (1,2 tO the frozen neurons
as shown in Figure 2(b). Given the trained O, for its [-th layer con-
taining K neurons, we have K pairs of parameters, respectively as
weight and bias, denoted as {(W) . b; 1) }. Note that the neuron
location [, k will be omitted for readability. Based on MTL, we
learn K pairs of scalars {®g, ,, }. Assuming X is the input, we

apply {®s, 5, } to (W,) as,
SS(X;Wb;(I)S{LQ}) = (W®¢51)X+(b+q)52)a 4)

where © denotes the element-wise multiplication.

Taking Figure 2(b) as an example of a single 3 x 3 filter, after
SS operations, this filter is scaled by ®g, then the feature maps
after convolutions are shifted by ®g, in addition to the original
bias b. Detailed steps of SS are given in Algorithm 1 in Section 4.4.

Figure 2(a) shows a typical parameter-level FT operation,
which is in the meta optimization phase of our related work
MAML [5]. It is obvious that FT updates the complete values
of W and b, and has a large number of parameters, and our SS
reduces this number to below % in the example of the figure.
In summary, SS can benefit the few-shot learning model in three
aspects. 1) It starts from a strong initialization based on a large-
scale trained DNN, yielding fast convergence for MTL. 2) It does
not change DNN weights, thereby avoiding the problem of “catas-
trophic forgetting” [31], [32] when learning specific episodes in
MTL. 3) It is light-weight, reducing the chance of overfitting
of MTL in few-shot scenarios. In experiments, we compare SS
with FT based on multiple baseline methods, and show the clear
superiority of SS against the problem of “forgetting”.

4.2 Hard task (HT) meta-batch

In this section, we introduce a method to schedule hard tasks in
meta-training batches. The conventional meta-batch is composed
of randomly sampled episodes, where the randomness implies ran-
dom difficulties [5]. In our meta-training pipeline, we intentionally
pick up failure cases in each episode and re-compose their data to
be harder episodes for adverse re-training. The task flow is shown
in Figure 3. We aim to force our meta-learner to “grow up through
hardness”.

hard hard
Tr task flow:
sl R task 1 task K’
0] 0%

Hard classes: m* m*

e R .
New samples:i (X, Y),* (X, Y),* l

1

online re-sampling

Fig. 3. The computation flow of online hard task sampling. During an HT
meta-batch phase, the meta-training first goes through K random tasks
then continues on re-sampled K’ hard tasks.

Pipeline. Given a (M-class, N-shot) episode 7, a meta-batch
{Ti~x} contains two splits, 7" and 7, for base-learning
and test, respectively. The base-learner is optimized by the loss
of 7() (in multiple epochs). SS parameters are then optimized
by the loss of 7(*¢) once. During the loss computation on 7 (*¢),
we can also get the recognition accuracy for M classes. Then, we
choose the lowest accuracy Accy,~ to determine the most difficult
class m* (also called failure class) in the current episode.

After obtaining all failure classes {m*} from {77} in cur-
rent meta-batch (k is the batch size), we re-sample episodes from
the data indexed by {m*}. Specifically, we assume p(7|{m*})
is the task distribution, we sample a “harder” episode 74 ¢
p(T|{m*}). Two important details are given below.

Choosing hard class m*. We choose the failure class m* from
each episode by ranking the class-level accuracies instead of fixing
a threshold. In a dynamic online setting as ours, it is more sensible
to choose the hardest cases based on ranking rather than fixing a
threshold ahead of time.

Two methods of hard tasking using {m*}. Chosen {m*}, we
can re-sample episodes 7"%"% by (1) directly using the samples
of m*-th class in the current episode 7, or (2) indirectly using
the index m* to sample new samples of that class. In fact, setting
(2) considers to include more data variance of m™*-th class and it
works better than setting (1) in general.

4.3 Meta-gradient regularization

In order to further reduce the “catastrophic forgetting” problem,
we deploy an easy and efficient meta-gradient regularization
method for each training episode. Particularly, we apply this
regularization to updating ®g,, ,, and 6. Let g denote the index of
current episode. Let Vﬁﬁm be the gradient of the 7-th episode.
Eq. (2) and Eq. (3) can be rewritten as,

Pg, =:Dg, — ’YV@Si £7—q(te) ([@’ 0’], @5{1,2})

q—1
— 1 Z Vag, Lo ([0:07] @5y,) 0 =1,2;
r=q—p
)
0 =:0— 'ng;c,rq(te) ([@, 9/], (1)5{1’2})
K) (6)
— s Y VoL o ([0;0], s, ,,),
r=q—p

where 1 and 5 are two temperature scalars to balance the
weights of the meta-gradients from current and previous episodes.

Algorithm 1: MTL with HT meta-batch strategy

Input: Task distribution p(7) and corresponding dataset
D, learning rates «, (3 and 7y
Output: Feature extractor ©, base learner), Scaling and
Shifting parameters P, ,,
1 Randomly initialize © and 6;
2 for samples in D do
3 | Evaluate Lp([©;6]) ;
4 Optimize © and 6,
5 end
6 Initialize ®g, by ones, initialize ®g, by zeros; Reset 6
for few-shot episodes; Randomly initialize 0; Initialize
{m*} as an empty set.
7 for iterations in meta-training do
8 Randomly sample a batch of episodes
{Tiek} € p(T):
9 for k from 1 to K do

10 for samples in 7;(”) do
11 Evaluate ET(");
k
12 Optimize 6’ by Eq. (1);
13 end
14 Optimize ¥, ,, and 0 by Eq. (5) and Eq. (6);
15 form e {1~ M} do
16 Classify samples of m-th class in ﬁ(te);
17 Compute Accp,;
18 end
19 Get the returned m™-th class, then add it to set
{m*}:
20 end

21 | Sample hard tasks {77974} C p(T|{m*});
2 for k from 1 to K’ do

23 Sample episode T, € {Thardy

24 for samples in ﬂchmd’(tr) do

25 Evaluate ET]:md,(m;

26 Optimize 6’ by Eq. (1);

27 end

28 Optimize <I>s{112} and 6 by Eq. (5) and Eq. (6);
29 end

30 | Empty {m*}.

31 end

4.4 The overall algorithm

We elaborate the training process using our approach in Algo-
rithm 1. There are two main training stages: large-scale DNN
training (line 1-5) and meta-transfer learning (line 6-31). In partic-
ular, the proposed HT meta-batch sampling (with the subsequent
training) are given on line 21-30. Note that the indices of failure
classes are returned on line 19.

4.5 Plug MTL into baseline methods

Conventional supervised few-shot learning methods include metric
learning based (e.g., ProtoNets [33], MatchingNets [28], and
RelationNets [34]) and optimization based (e.g., MAML [5]).
For semi-supervised few-shot learning, there are Masked Soft
k-Means [26], TPN [48], and LST [27]. The neural network
architecture in these methods is often composed of two modules,
i.e. convolutional-layer feature extractor © and fully-connected-

layer classifier . Our MTL operations SS are conducted on
convolutional neurons, so they are generic and easy to plug in
O.

First, we pre-train © on a many-shot classification task using
the whole set of D. Then, we plug-in Scaling and Shifting
weights ®sg on each neuron of © and update them with meta
loss. Given an episode 7, we feed training images) and
test images 2 o the feature extractor © ® ®sg, and obtain
the embedding e(*") and e(*®), respectively. We apply different
classifier architectures [5], [26]-[28], [33], [34], [48] to train
classifiers with e(*) and y(*"), and then test with e(*¢) resulting
in the predictions §(*). We then compute the test loss using
7*¢) and y(*¢). Using this loss, we proceed meta-gradient back-
propagation to update ®gg as well as the original meta-learner
proposed in the baseline methods, e.g. the initialization network
of base-learner 6 in MAML [5]. In experiments, we report all
our plug-in results compared to those of using FT operations (see
Table 4 and Table 5).

5 EXPERIMENTS

We evaluate the proposed approach in terms of few-shot recogni-
tion accuracy and model convergence speed. Below we describe
the datasets we evaluate on and detailed settings, followed by
the comparisons to state-of-the-art methods, validations on several
baseline methods with SS plugin, and an ablation study regarding
the key components of our approach, i.e., SS operations, HT
meta-batch, and meta-gradient regularization. In the end, we
demonstrate the statistical numbers and Gaussian fitting curves
for the meta-learned SS parameters.

5.1

We conduct few-shot learning experiments on three benchmarks,
minilmageNet [28], tieredlmageNet [26] and Fewshot-CIFAR100
(FC100) [37]. minilmageNet is the most widely used in related
works [5], [18], [19], [39], [78], and the later ones are more
recently published with a larger scale and a more challenging
setting, i.e., lower image resolution and stricter training-test splits.
minilmageNet [28]. It was proposed especially for the few-shot
learning evaluation [28]. Its complexity is high due to the use of
ImageNet images, but it requires less resource and infrastructure
than running on the full ImageNet dataset [79]. In total, there
are 100 classes with 600 samples of 84 x 84 color images per
class. These 100 classes are divided into 64, 16, and 20 classes
respectively for sampling episodes for meta-train, meta-validation
and meta-test, following related works [5], [18], [19], [39], [78].
tieredImageNet [26]. Compared to minilmageNet, it is a larger
subset of ImageNet with 608 classes (779,165 images) grouped
into 34 super-class nodes. These nodes are partitioned into 20,
6, and 8 disjoint sets respectively for meta- training, validation,
and test. The corresponding sub-classes are used to build the
classification tasks in each of which the 5 sub-classes are randomly
sampled. As argued in [26], this super-class based training-test
split results in a more challenging and realistic regime with meta-
test and validation episodes that are less similar to meta-train
episodes.

Fewshot-CIFAR100 (FC100) [37]. This dataset is based on the
popular object classification dataset CIFAR100 [80]. Its training-
test splits are also based on super-classes [37]. In total, it con-
tains 100 object classes (600 images per class) belonging to 20

Datasets

6

super-classes. meta-train data are from 60 classes belonging to
12 super-classes. Meta-validation and meta-test sets contain 20
classes belonging to 4 super-classes, respectively. Comparing to
the ImageNet subsets above, FC100 offers a more challenging
scenario with lower image resolution, i.e. each sample is a 32 X 32
color image. In addition, the super-class gap on FC100 is more
significant than that on ImageNet datasets.

Semi-supervised splits. On minilmageNet and fieredImageNet,
we follow the semi-supervised task splitting method used in
previous works [26], [27], [48]. In addition to the supervised
data (same as above), we use 30 (50) unlabeled images per class
for every 1-shot (5-shot) episode. In a more difficult setting, we
use unlabeled data from 3 distracting classes (same number of
samples with non-distracting classes) that are excluded in the
support set [26], [48]

5.2

Episode sampling. We use the same episode sampling method
as related works [5], on all datasets. Specifically, (1) we consider
the 5-class classification, (2) during meta-train, we sample 5-class,
1-shot (or 5-shot) episodes to contain 1 (or 5) samples for train
episode and 15 (uniform) samples for episode test, and (3) during
meta-validation and meta-test, we sample 5-class, 1-shot (or 5-
shot) episodes to contain 1 (or 5) samples for train episode and
1 (uniform) sample for episode test. Note that in some related
works, e.g., [37], 32 samples are used for episode test on 5-shot
episodes. Using such a larger number of test samples results in the
lower standard variance of recognition accuracies.

In total, we sample at most 20k episodes (10k meta-batches)
for meta-train (same for the cases w/ and w/o HT meta-batch), and
sample 600 random episodes for both meta-validation and meta-
test [5]. Note that we choose the trained models which have the
highest meta-validation accuracies, for meta-test.

Network architectures. We present the details of network archi-
tectures for Feature Extractor parameters ©, MTL meta-learner
with Scaling and Shifting (SS) parameters ®g,, Ps,, and MTL
base-learner (classifier) parameters #. For O, in our conference
version [6], we used ResNet-12 and 4CONV which are also
commonly used in previous works [5], [23], [28], [37], [39],
[50], [78]. In this journal version, we implement two deeper
architectures — ResNet-18, ResNet-25 and WRN-28-10 which
have been adopted in newly published related works [24], [40],
[67], [81], and we achieve the top performance using ResNet-25
and WRN-28-10. In specific, 4CONV consists of 4 layers with
3 % 3 convolutions and 32 filters, followed by batch normalization
(BN) [82], a ReL.U nonlinearity, and 2 X 2 max-pooling. MTL only
works with the following deep nets. ResNet-12 contains 4 residual
blocks and each block has 3 CONV layers with 3 x 3 kernels.
At the end of each residual block, a 2 X 2 max-pooling layer is
applied. The number of filters starts from 64 and is doubled every
next block. Following 4 blocks, there is a mean-pooling layer to
compress the output feature maps to a feature embedding. ResNet-
18 contains 4 residual blocks and each block has 4 CONV layers
with 3 x 3 kernels. The number of filters starts from 64 and is
doubled every next block. Before the residual blocks, there is one
additional CONV layer with 64 filter and 3 x 3 kernels at the
beginning of the network. The residual blocks are followed by an
average pooling layer. The ResNet-18 backbone we use exactly
follow [2] except that the last FC layer is removed. ResNet-25 is
exactly the same as the released code of [41], [67]. Three residual

Implementation details

blocks are used after an initial convolutional layer. Each block
has 4 CONV layers with 3 x 3 kernels. The number of filters
starts from 160 and is doubled every next block. After a global
average pooling layer, it leads to a 640-dim embedding. WRN-
28-10 has its depth and width set to 28 and 10, respectively. After
a global average pooling in the last layer of the backbone, it gets
a 640-dimensional embedding. For this backbone, we resize the
input image to 80 x 80 x 3 for a fair comparison with related
methods [6], [24]. Other details are same with those of ResNet-
25 [25], [41]. Note that we employ this architecture using the code
of SIB [24] and implement only our SS operations to it.

For the architecture of ®g, and ®g,, actually, they are
generated according to the architecture of ©, as introduced in
Section 4.1. For example, when using ResNet-25 in MTL, ®g,
and ®g, also have 25 layers, respectively.

For the architecture of 6 (the parameters of the base-learner),
we empirically find that in our cases a single FC layer (as
0) is faster to train and more effective for classification than
multiple layers, taking the most popular dataset minilmageNet as
an example. Results are given in Table 1, in which we can see the
performance drop when changing this 6 to multiple layers.

minilmageNet
Base-learning Dim. of 0
1-shot 5-shot
0 (2 FC layers) 512,5 59.1 £1.9 70.7 £o.9
0 (3 FC layers) 1024,512,5 562 +1s 68.7 £o.9
0,0 5 59.6 1.8 71.6 xo.9
0 (Ours) 5 60.6 110 743 :tos
TABLE 1

The 5-way, 1-shot and 5-shot classification accuracy (%) on
minilmageNet, for choosing the best architecture of base-learner (i.e.,
the classifier 6). “meta-batch” and “ResNet-12 (pre)” are used.

Pre-training stage. For the phase of DNN training on large-
scale data, the model is trained by Adam optimizer [83]. The
learning rate is initialized as 0.001, and decays to its half every 5k
iterations until it is lower than 0.0001. We set the keep probability
of the dropout as 0.9 and batch-size as 64. The pre-training stops
after 10k iterations. Note that for hyperparameter selection, we
randomly choose 550 samples each class as the training set, and
the rest as validation. After the grid search for hyperparameters,
we fix them and mix up all samples (64 classes, 600 samples each
class) to do the final pre-training. Image samples in these steps are
augmented by horizontal flipping.

Meta-train stage. This is a task-level training in which the base-
learning in one task considers a training step for optimizing base-
learner, followed by a validation step for optimizing meta-learner.
The base-learner @ is optimized by batch gradient descent with
the learning rate of 0.01. It is updated with 20 and 60 epochs
respectively for 1-shot and 5-shot episodes on the minilmageNet
and tieredImageNet datasets, and 20 epochs for all episodes on
the FC100 dataset. Specially when using ResNet-25, we use
100 epochs for all episodes on all datasets. The meta-learner,
i.e. the parameters of the SS operations, is optimized by Adam
optimizer [83]. Its learning rate is initialized as 0.001, and decays
to the half every 1k iterations until 0.0001. The size of meta-
batch is set to 2 (episodes) due to the memory limit. For meta-
gradient regularization, each time we deploy 8 previous episodes
to compute meta gradients, and set temperature scalars 17 and o
both as 1.0.

7

HT meta-batch. Hard tasks are sampled every time after running
10 meta-batches, i.e., the failure classes used for sampling hard
tasks are from 20 episodes as each meta-batch contains 2 episodes.
The number of hard tasks is selected for different settings by
validation: 10 and 4 hard tasks respectively for the 1-shot and
5-shot experiments, on the minilmageNet and tieredlmageNet
datasets; and respectively 20 and 10 hard tasks for the 1-shot,
5-shot experiments, on the FC100 dataset.

Ablative settings. In order to show the effectiveness of our SS
operations, we carefully design several ablative settings: two base-
lines without meta-learning but more classic learning, named as
update*, four baselines of Fine-Tuning (FT) on different numbers
of parameters in the outer-loop based on MAML [5], named as
FT*, and two SS variants on smaller numbers of parameters,
named as SS*. Table 6 shows the results in these settings, for which
we simply use the classical architecture (ResNet-12) containing 4
residual blocks named ©1 ~ ©4 and an FC layer 6 (classifier).
The bullet names used in the Table are explained as follows.
update [O;0] (or 6). There is no meta-train phase. During test
phase, each episode has its whole model [©; 6] (or the classifier
#) updated on T(r) and then tested on T (¢,

FT 0 ([©4;0] or [©3;04;0] or [O;6]). These are straight-
forward ways to reduce the quantity of meta-learned parameters.
For example, “[©3; ©4; 0] does not update the the first two resid-
ual blocks which encode the low-level image features. Specially,
“6” means only the classifier parameters are updated during meta-
train.

SS [04; 0] (or [©3;04;0] or [O;0]). During the meta-train, SS
parameters are defined and used on ©4. Low-level residual blocks,
e.g. ©1, deploy the pre-trained weights without meta-level update.
SS [O©; 0], regularized. Our method of meta-transfer learning on
the whole backbone and with meta-gradient regularization.

5.3 Comparison to the state-of-the-art

Table 2 and Table 3 present the overall comparisons to re-
lated works, on the minilmageNet, tieredlmageNet, and FC100
datasets. Note that these numbers are the meta-test results of
the meta-trained models which have the highest meta-validation
accuracies. On the minilmageNet, models on 1-shot and 5-shot
are meta-trained for 6k and 10k iterations, respectively. On the
tieredlmageNet, iterations for 1-shot and 5-shot are at 8k and
10k, respectively. On the FC100, iterations are all at 3k.
minilmageNet. In Table 2, we can see that “SIB + SS [©; 6]” and
“SS [©; 6], HT meta-batch” achieve top performances for 1-shot
and 5-shot tasks, respectively. Regarding the network architecture,
we can see that models using deeper ones, e.g. ResNet-25 and
WRN-28-10, outperform 4CONV-based models by quite large
margins, e.g. 4CONV models have the best 1-shot result with
55.51% [48] which is 9.4% lower than 64.9% (our method on
ResNet-25). This clearly validates our contribution of utilizing
deeper neural networks to tackle the few-shot classification prob-
lems.

tieredlmageNet. In Table 3, we give the results on the larger
dataset — tieredlmageNet. Since this dataset is newly pro-
posed [26], its results of using previous methods [5], [33], [34]
were reported by [26], [48]. From the table, we again confirm that
“SIB + SS [©;6]” outperforms others, e.g. it achieves around a
margin of 2.6% over the original SIB [24] on 1-shot tasks. An
interesting observation is that on this larger and more challenging
dataset, our deeper version of MTL (ResNet-25) outperforms the

minilmageNet (test)

Few-shot Learning Method Backbone
1-shot 5-shot
Data augmentation Adv. ResNet, [9] WRN-40 (pre) 55.2 69.6
Delta-encoder, [10] VGG-16 (pre) 58.7 73.6
MatchingNets, [28] 4 CONV 43.44 £ 0.77 55.31 £0.73
ProtoNets, [33] 4 CONV 49.42 £+ 0.78 68.20 + 0.66
Metric learning RelationNets, [34] 4 CONV 50.44 + 0.82 65.32 £ 0.70
Graph neural network, [47] 4 CONV 50.33 + 0.36 66.41 £+ 0.63
Ridge regression, [46] 4 CONV 519+ 0.2 68.7+ 0.2
TransductiveProp, [48] 4 CONV 55.51 69.86
Meta Networks, [29] 5 CONV 49.21 £+ 0.96 -
SNAIL, [50] ResNet-12 (pre)® 55.71 £0.99 68.88 £+ 0.92
Memory network TADAM, [37] ResNet-12 (pre)’ 58.5 + 0.3 76.7 + 0.3
Cross-Modulation Nets, [44] 4 CONV 50.94 + 0.61 66.65 + 0.67
Isotropic Gaussian, [51] ResNet-34 (pre) 563+ 04 73.9 £ 0.3
MAML, [5] 4 CONV 48.70 £ 1.75 63.11 £ 0.92
MAML++, [22] 4 CONV 52.15 £+ 0.26 68.32 + 0.44
Meta-LSTM, [39] 4 CONV 43.56 + 0.84 60.60 £+ 0.71
Hierarchical Bayes, [18] 4 CONV 49.40 + 1.83 -
MT-net, [53] 4 CONV 51.70 + 1.84 -
Bilevel Programming, [19] ResNet-12° 50.54 4+ 0.85 64.53 + 0.68
Gradient descent MetaGAN, [21] ResNet-12 52.71 £ 0.64 68.63 + 0.67
adaResNet, [78] ResNet-12* 56.88 + 0.62 71.94 + 0.57
MetaOptNet, [23] ResNet-12 62.64 + 0.35 78.63 4+ 0.68
LEO, [25] WRN-28-10 (pre) 61.67 4+ 0.08 77.59 £ 0.12
LGM-Net, [49] MetaNet+4CONV 69.13 4+ 0.35 71.18 £+ 0.68
CTM, [40] ResNet-18 (pre) 64.12 + 0.82 80.51 + 0.13
SIB, [24] WRN-28-10 (pre) 70.0 + 0.6 792+ 04
FT [©; 0], HT meta-batch ResNet-12 (pre) 587+1.8 732+0.8
SS [©; 6], HT meta-batch ResNet-12 (pre) 61.4+138 759 £ 0.8
Ours SS [©; 6], HT meta-batch ResNet-18 (pre) 620+ 1.9 76.0 £ 0.8
SS [©; 6], HT meta-batch ResNet-25 (pre) 649 + 1.8 81.2 +0.8
SIB + SS [©; 6] WRN-28-10 (pre) 71.0 £ 0.7 81.0 £ 0.4

° Additional 2 convolutional layers *Additional 1 convolutional layer 'Additional 72 fully connected layers
TABLE 2

The 5-way, 1-shot and 5-shot classification accuracy (%) on minilmageNet datasets. “pre” means including our pre-training step with all training
datapoints. The best and second best results are highlighted. Note that (1) the standard variance is affected by the number of episode test
samples, and our sample splits are the same with MAML [5]; and (2) our methods with SS [©; 6] all use meta-gradient regularization.

tieredImageNet (test) FC100 (test)

Few-shot Learning Method Backbone
1-shot 5-shot 1-shot 5-shot

ProtoNets, [33] (by [26]) 4 CONV 5331 +£0.89 72.69+0.74 - -
ProtoNets, [33] (by us) ResNet-25 65.30 £1.70 83.00 + 0.70 41.1+£1.8 58.6=+0.8
RelationNets, [34] (by [48]) 4 CONV 5448 +£0.93 7132+ 0.78 - -
TransductiveProp, [48] 4 CONV 5741 £0.94 71.55+0.74 - -
MAML, [5] (by us) 4CONV 49.0 £ 1.8 66.5 £ 0.9 38.1£1.7 504+£1.0
MAML++, [22] (by us) 4CONV 51.54+0.5 70.6 + 0.5 38.7+04 529+04
TADAM, [37] ResNet-12 (pre)’ 62.13 £ 0.31 81.92 + 0.30 40.1 £0.4 56.1+0.4
MetaOptNet [23] ResNet-12 6599 £0.72 81.56 + 0.53 41.1£0.6 555=+0.6
CTM, [40] ResNet-18 (pre) 68.41 +0.39 84.28 +£1.73 - -
LEO, [25] WRN-28-10 (pre) 66.33 + 0.05 81.44 4+ 0.09 - -
SIB, [24] (by us) WRN-28-10 (pre) 72.9 + 0.6 828+ 0.4 452 +0.6 559404
FT [©; 0], HT meta-batch ResNet-12 (pre) 64.7 + 1.7 785+ 0.8 420+1.8 55240.8
SS [©; 0], HT meta-batch ResNet-12 (pre) 65.3 £ 1.8 81.2 £ 0.8 453+1.8 575408
SS [©; 6], HT meta-batch ResNet-18 (pre) 68.1+1.8 823+0.8 455+1.8 579408
SS [©; 6], HT meta-batch ResNet-25 (pre) 723+ 1.8 85.6 £ 0.8 46.1 £1.8 614+0.8
SIB + SS [©; 0] WRN-28-10 (pre) 755 + 0.7 843+ 04 459 +£0.7 56.7+04
T Additional 72 fully connected layers.

TABLE 3

The 5-way, 1-shot and 5-shot classification accuracy (%) on tieredlmageNet and FC100 datasets. “pre” means including our pre-training step with
all training datapoints. “by [*]” means the results were reported in [*]. “by us” means our implementation using open-sourced code. The best and
second best results are highlighted. Note that (1) the standard variance is affected by the number of episode test samples, and our sample splits
are the same with MAML [5]; and (2) our methods with SS [©; 6] all use meta-gradient regularization.

minilmageNet mn ImageNet tieredlmageNet
Few-shot Learning Method Operation (tieredPre)
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
ProtoNets [33] SS 56.7 £10 72.0 xo9 62.0 19 779 £10 622 +21 78.1 +o9
FT 552 +19 70.8 oo 572 +19 759 +oo 549 +20 73.0 10
. SS 58.1 +18 66.9 +oo 63.6 +17 73.2 oo 64.5 t19 739 oo
MachingNets [28] FT 574+17 675408 6lls1s 72605 624115 735 +os
. SS 572 +18 T1.1 +oo 61.5 +18 749 +oo 65.6 +t19 T7.5 oo
RelationNets [34] FT 560215 69.0+0s 589 :1s 720405 622215 760 +oo
MTL (FC) SS 60.6 £15 74.3 +os 65.7 +1s 784 +os 65.6 +17 78.7 too
MAML [5] (FC) FT 583 +19 71.6 oo 61.6 +19 73.5 +os 62.0 £185 70.6 £oo
MTL (Cosine) SS 582 +1s 74.6 £os 66.1 15 79.7 +oo 67.1 £15 80.0 +os
MAML [5] (Cosine) FT 59.8 115 72.8 £oo 59.9 19 76.5 £o1 65.1 £19 78.2 +os
TABLE 4

The 5-way, 1-shot and 5-shot classification accuracy (%) on minilmageNet and tieredimageNet datasets. “meta-batch” and “ResNet-12 (pre)” are
used. “(tieredPre)” means the pre-training stage is finished on the tieredimageNet. We implement the public code of related methods [5], [28],
[33], [34], [45] in our framework by which we are able to conduct different meta operations, i.e. FT [©; 6] and SS [©; 0]. The best and second best
results are highlighted in each block. Note that (1) cosine classifiers have been used in MatchingNets [33] and Baseline++ [45] for few-shot
classification; and (2) MAML in this table is not exactly the same with original MAML [5], as it works on deep neural networks and does not update
convolutional layers during base-training.

minilmageNet tieredlmageNet minilmageNet w/D tieredlmageNet w/D
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
Masked Soft k-Means [26] 50.7 o3 644 +o2 524 +04 69.9 102 49.0 05 63.0 £oa 514 £04a 69.1 o3
Masked Soft k-Means w/ MTL ~ 58.6 +1s 72.2 +os 65.1 +os 80.1 +os 572 +1s 71.0 tos 63.5 +15 80.2 +os
TPN [48] 52.8 03 664 +o2 557 03 71.0 02 504 +os 64.9 tos 535 09 69.9 +os
TPN w/ MTL 59.6 +18 723 +os 68.3 19 80.4 +os 59.1 £15 71.0 +os 67.7 +19 80.3 +os
LST [27] w/o MTL 64.7 +19 74.8 +os 733 +16 829 +os 598 +19 74.8 tos 702 16 81.9 +os
LST w/ MTL 70.1 £19 78.7 +os 777 +16 85.2 +os 64.1 +t10 T77.4 +os 735 +16 834 +os
TABLE 5

Semi-supervised 5-way, 1-shot and 5-shot classification accuracy (%) on minilmageNet and tieredlmageNet. “meta-batch” and “ResNet-12 (pre)”
are used. “w/D” means additionally including the unlabeled data from 3 distracting classes (5 unlabeled samples per class) that are excluded in
the “5-way” classes of the task [26], [27], [48].

shallower one (ResNet-12) by 7% on 1-shot, which is twice
the margin on minilmageNet (3.5%). This shows our idea of
transferring knowledge from pre-trained DNNs is more promising
for handling harder few-shot settings.

FC100. In Table 3, we also show the results on the FC100.
We report the numbers of TADAM [37] and MetaOptNet [23]
given in original papers, and obtain the results of classical
methods, i.e. MAML [5], MAML++ [22], RelationNets [34] and
MatchineNets [28], by implementing their open-sourced code on
the deeper pre-trained networks. From the table, we can see that
our approach consistently outperforms MAML and its improved
version MAML++ by large margins, e.g. over 7% for 1-shot tasks.
Besides, it surpasses TADAM and MetaOptNet by 6% and 5%,
respectively. Implementing SS operations on SIB brings around
1% gains over the original both for 1-shot and 5-shot.

5.4 Plug-in evaluation

The Scaling and Shifting (SS) operations in our proposed MTL
approach work on pre-trained convolutional neurons thus are easy
to be applied to other CNN-based few-shot learning models.
Detailed plug-in steps are given in Section 4.5.

Table 4 shows the results of implementing SS operations
on supervised models, i.e. ProtoNets [33], MatchingNets [28],
RelationNets [34], MAML [5] (with a single FC layer as the base-
learner [6]), and MAML [5] (with a cosine distance classifier as

the base-learner [28], [45]). In their original methods, FT is the
meta-level operation and 4CONV is the uniform architecture. For
an easy and fair comparison, we also implement the results of
using FT on deeper networks (e.g. ResNet-12). Note that more
results of using ResNet-18 are provided in the Appendix. Re-
garding the table, we have three columns. “minilmageNet (tiered
Pre)” denotes that the model is pre-trained on tieredlmageNet
and its weights are then meta-transferred to the learning of few-
shot models on minilmageNet episodes. We can see that in all
settings, (1) the best performance is achieved by our proposed
MTL, e.g., MTL (FC) outperforms MAML (FC) by 3.6% and
8.1% on tieredlmageNet 1-shot and 5-shot, respectively; and (2)
classical methods using SS get consistent improvements over the
original version of using FT, e.g., RelationNets [34] gains 3.4%
and 1.5% on tieredImageNet 1-shot and 5-shot, respectively.

In addition, we verify the generalization ability of our MTL
to semi-supervised few-shot learning (SSFSL) methods [26],
[27], [48]. Our results on the minilmageNet and tieredlmageNet
datasets are presented in Table 5. Note that “w/D” indicates the
more challenging setting of including 3 distracting classes in the
unlabeled set (see Section 5.1). From Table 5, we can see that
three models “w/ MTL” obtain consistent improvements (over
their originals) by quit large margins, e.g. the highest as 14.2% on
tieredImageNet 1-shot w/D.

10

., minilmageNet FC100
Settings minilmageNet (tieredPre) FC100 (tieredPre)
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
update [©; 0] 453 £19 64.6 209 544 15 73.7 xos 384 £1s 52.6 £oo 37.6 1o 52.7 oo
update 6 50.0 £18 66.7 +00 513 418 703 +os 393 419 51.8 +o00 383 +18 529 +10
FT 6 559 +10 714 +o0 61.6 15 73.5 £oo 416 119 549 £ 10 404 +19 547 +oo
FT [©4;0] 572 +1s 71.6 +os 623 +18 739 xoo 409 +15 543 +10 412 18 53.6 10
FT [©3,04;6] 58.1 +1s 70.9 +os 63.0 18 74.8 £oo 415 +1s 53.7 £o9 40.7 +19 53.8 £o00
FT [©;0] 583 18 T1.6 xos 63.2 £19 75.7 xos 416 x19 544 110 41.1 £19 54.5 +oo
SS [©4; 0] 59.2 £18 73.1 xo9 64.0 15 76.9 +os 424 £19 551 £10 427 £19 559 + 10
SS [0©3,04;0) 594 +1s 734 tos 64.5 +1s 772 xos 425 +19 545 + 10 434 +15 564 +10
S5 0;0] 60.6 +15 74.3 +os 65.7 +15 784 +oo 43.6 +19 554 10 435 19 570 + 10
SS [@; 9], regularized 61.0 £1s 74.5 +os 66.2 +15 791 +os 43.5 +17 55.3 +0s 435 +19 57.2 +os
TABLE 6

The 5-way, 1-shot and 5-shot classification accuracy (%) using ablative models, on two datasets. “meta-batch” and “ResNet-12 (pre)” are used.
“(tieredPre)” means the pre-training stage is finished on the tieredimageNet. The best and second best results are highlighted.

minilmageNet tieredImageNet
Setting

1-shot 5-shot 1-shot 5-shot
FT [©;0] 583 19 71.6 £oo 61.6 £19 73.5 xos
FT [©;0], HT 587 +1s 732 x0s 64.7 £17 78.5 +os
SS[©;0] 60.6 £19 743 08 65.6 +17 78.7 +o0
SS[©;0], HT 61.4 +15 759 x0s 653 £1s 81.2 +os

TABLE 7
Ablation results for the 5-way, 1-shot and 5-shot classification accuracy
(%) on minilmageNet and tieredimageNet datasets. “ResNet-12 (pre)”
is used.

5.5 Ablation study

Table 6 shows the results of ablation studies on the minilmageNet
and FC100. Figure 4 demonstrates the performance gap between
w/ and w/o HT meta-batch in terms of recognition accuracy
and converging speed on the FC100. Table 7 summarizes the
accuracies of w/ and w/o HT meta-batch on ImageNet-based
datasets.

MTL vs. No meta-learning. Table 6 shows the results of No meta-
learning methods on the top block. Compared to these, our ap-
proach achieves significantly better performance, e.g., the largest
margins on minilmageNet are 11.0% for 1-shot and 7.8% for
5-shot. This validates the effectiveness of meta-learning method
for tackling few-shot learning problems. Between two No meta-
learning methods, we can see that updating both feature extractor
O and classifier 6 is inferior to updating 6 only (O is pre-trained),
e.g., around 5% reduction on minilmageNet 1-shot. One reason
is that in few-shot settings, there are too many parameters to
optimize with few-shot data. This is our motivation to learn only
0 during base-learning (see Table 1).

SS [©; 0] works better than light-weight FT variants. Table 6
shows that our approach with SS [©; 6] achieves the best perfor-
mances for all few-shot settings. SS actually meta-learns a smaller
set of transferring parameters on [O;] than FT. People may argue
that FT is weaker because it learns a larger set of initialization
parameters, whose quantity is equal to the size of [©; 6], causing
the model to overfit to few-shot data. In the middle block of
Table 6, we show the ablation study of freezing low-level pre-
trained layers and meta-learn only the high-level layers (e.g. ©4
of ResNet-12) by FT operations. It is obvious that they all yield
inferior performances than using our SS. An additional observation
is that our methods SS* perform consistently better than FT*.
Meta-gradient regularization is effective. On the last two rows

of Table 6, we validate the effectiveness of meta-gradient regular-
ization (see Section 4.3). From the results we can see deploying
such cross-task memory regularization (SS [©; 6], regularized)
achieves better performance than using SS [©; 6] whose meta gra-
dients each time come from an individual episode. This is because
our regularization forces meta-learner to be less forgetting about
previous episodes, and additionally stabilize the meta-gradients of
each few-shot episode.

Accuracy gain by HT meta-batch. HT meta-batch is basically a
curriculum learning scheme, and can be generalized to the models
with different network architectures. In Table 7, we show the
ablation results for HT meta-batch on ImageNet-based datasets.
Comparing SS [0; 6], HT (HT meta-batch) with SS [O;0], HT
meta-batch improves the results by an average accuracy of 1.5%.
In Figure 4, we show the validation curves including the cases of
using FT as well as SS during meta-training on the FC100 dataset.
Red curves are the results of using conventional meta-batch [5].
It is clear that HT meta-batch boosts both FT and SS based meta-
learners.

Speed of convergence of MTL with HT meta-batch. From
Figure 4 (a)-(d), we can see that impressively, the models using
our proposed HT meta-batch require only 1 ~ 4k episodes to
converge to a good performance. Note that (1) each iteration
contains 2 training episodes, and (2) MAML [5] without deep
pre-trained networks used over 200k episodes to achieve the best
performance on minilmageNet. We attest this to three reasons.
First, our methods start from the pre-trained deep neural networks.
Second, our SS needs to learn only < % parameters of the number
of FT parameters. Third, our HT meta-batch is a hard negative
mining step and brings accelerations by learning challenging
tasks [36].

5.6 Statistical data of SS

We evaluate to what extent neuron weights and biases (e.g.,
on ResNet-12) have drifted after SS operations. We present the
statistics on the learned SS weights in Table 8. Each number in
the table shows how much the weight (or bias) drifts from original
weight (or bias) pre-trained using large-scale data. Each dot curve
in (a) and (b) presents the distribution of those numbers, matching
well with the Gaussian distribution (in red).

We find that Scaling parameters are more scattered than
Shifting on three datasets. The average shift of mean values x. of
Scaling is 4.51 x 10~2 higher than that of Shifting 7.13 x 10~*

11

0.42 0.42 NW 0.4
= M-x 0.42 y . /\/\
040 0.40 0.43
5 0.40
5038 038 0.42
g 038
3 ‘ 0.41

0.36 036 | ‘

036 040!
0 2k 4k 6k 8k 0 2k 4k 6k 8k 0 2k 4k 6k 8k 0 2k 4k 6k 8k

iterations
(b) SS, ResNet-12

iterations
(a) FT, ResNet-12

iterations
(d) SS, ResNet-25

iterations
(c) SS, ResNet-18

Fig. 4. The 5-way, 1-shot meta-validation accuracy plots on the FC100, using FT (pre-trained ResNet-12 and MAML [5]) and our MTL on different
pre-trained networks. Red curve uses the original meta-batch [5] and others use our proposed HT meta-batch.

(a) minilmageNet (b) minilmageNet

-+ Relative Frequency|
Gaussian Curve

+ Relative Frequency|
Gaussian Curve

o
=)

Relative Frequency
g
-
Relative Frequency
‘ &
——
=

o
9
3

o

@
2.
(

-0.1 0.00 0.05 0.10

0.5 1.0 1.5 0 -0.
The value of scaling The value of shifting

minilmageNet tieredIlmageNet FC100
w Yo 9.58x107° 1.95 x 1074 8.01 x 107°
S z. 994x10°? 9.98 x 1071 9.93 x 107!
S w 211x107 149x 107" 227 x 107"
A 9.87x1073 9.79 x 1073 9.90 x 1073
w Yo 1.99x 1073 1.32 x 1073 1.30 x 1073
g e T7.52x107* 7.61 x 107* 6.28 x 10~*
S w 146x 1072 1.53 x 10*? 1.70 x 10{2
A 165x1073 1.73 x 1072 1.71 x 1073
TABLE 8

Statistical values of SS parameters, i.e. to see how much network
parameters drifted after the meta-training using SS. The experiments
are conducted with the settings of ResNet-12, meta-batch, 5-way and
1-shot. Scaling and Shifting parameters are counted with bin size 0.01

and 0.002, respectively. Relative frequency of each SS value is
computed. All dots match a fit to the Gaussian distribution

(y =90+ \}4%6_2(=)2). z. and w are the values of mean and
w ™

standard deviation, respectively. yo and A are two parameters of the
distribution to enable the exact fit.

(note that initialization for Scaling parameter is 1 and for Shifting
is 0). The standard deviation w shows also higher for Scaling. We
think these are due to the fact that convolution neuron weights
(rather than neuron biases) encode the most of image representa-
tion knowledge. We also see the differences among three datasets:
the parameter drifting is more obvious on smaller datasets such as
the FC100. In other words, the gap between pre-trained model and
meta-learner is more significant on such dataset. We think this is
because the feature representations learned on small-size data are
not as generalizable as those learned on larger-scale data.

6 CONCLUSIONS

In this paper, we show that our novel MTL model trained with
HT meta-batch learning curriculum achieves the top performance
for tackling few-shot learning problems. The key operations of
MTL on pre-trained DNN neurons proved to be highly efficient for
adapting the learning experience to the unseen task. The superior-
ity was particularly achieved in the extreme 1-shot cases on three
challenging benchmarks — minilmageNet, tieredlmageNet, and

FC100. The generalization ability of our method is validated by
implementing MTL on the classical supervised few-shot models
as well as the state-of-the-art semi-supervised few-shot models.
The consistent improvements by MTL prove that large-scale
pre-trained deep networks can offer a good “knowledge base”
to conduct efficient few-shot learning on. In terms of learning
scheme, HT meta-batch showed consistently good performance for
the ablative models. On the more challenging FC100 benchmark, it
showed to be particularly helpful for boosting convergence speed.
This design is independent of any specific model or architecture
and can be generalized well whenever the hardness of task is easy
to evaluate in online iterations.

ACKNOWLEDGMENTS

This research was supported by the Singapore Ministry of Educa-
tion (MOE) Academic Research Fund (AcRF) Tier 1 grant. This
research is as part of NExT++, a research is supported by the
National Research Foundation, Singapore under its International
Research Centres in Singapore Funding Initiative.

REFERENCES

[1] L. Yann, B. Yoshua, and H. Geoffrey, “Deep learning,” Nature, vol.
521(7553), p. 436, 2015.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016, pp. 770-778.

[3] E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 39, no. 4, pp. 640-651, 2017.

[4] F. Li, R. Fergus, and P. Perona, “One-shot learning of object categories,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28,
no. 4, pp. 594611, 2006.

[5S] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” in ICML, 2017, pp. 1126-1135.

[6] Q. Sun, Y. Liu, T.-S. Chua, and B. Schiele, “Meta-transfer learning for
few-shot learning,” in CVPR, 2019, pp. 403-412.

[71 D. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep
network learning by exponential linear units (elus),” in /CLR, 2016.

[8] A. Khoreva, R. Benenson, E. Ilg, T. Brox, and B. Schiele, “Lucid data
dreaming for object tracking,” arXiv, vol. 1703.09554, 2017.

[9] A. Mehrotra and A. Dukkipati, “Generative adversarial residual pairwise

networks for one shot learning,” arXiv, vol. 1703.08033, 2017.

E. Schwartz, L. Karlinsky, J. Shtok, S. Harary, M. Marder, R. S. Feris,

A. Kumar, R. Giryes, and A. M. Bronstein, “Delta-encoder: an effective

sample synthesis method for few-shot object recognition,” in NeurIPS,

2018, pp. 2850-2860.

Y. Wang, R. B. Girshick, M. Hebert, and B. Hariharan, “Low-shot

learning from imaginary data,” in CVPR, 2018, pp. 7278-7286.

Y. Xian, S. Sharma, B. Schiele, and Z. Akata, “f~-VAEGAN-D2: A feature

generating framework for any-shot learning,” in CVPR, 2019, pp. 10275

10284.

S. Bartunov and D. P. Vetrov, “Few-shot generative modelling with

generative matching networks,” in AISTATS, 2018, pp. 670-678.

[10]

[11]

[12]

[13]

[14]

[15]
[16]
(171
[18]

[19]

[20]

[21]

[22]
[23]

(24]

(25]

[26]

[27]

[28]

[29]
(30]
[31]

(32]

(33]

[34]

(351

[36]

[37]

[38]
[39]

[40]

[41]
[42]

[43]

[44]

S. Bengio, Y. Bengio, J. Cloutier, and J. Gecsei, “On the optimization
of a synaptic learning rule,” in Optimality in Artificial and Biological
Neural Networks. Univ. of Texas, 1992, pp. 6-8.

D. K. Naik and R. Mammone, “Meta-neural networks that learn by
learning,” in IJCNN, 1992, pp. 437-442.

S. Thrun and L. Pratt, “Learning to learn: Introduction and overview,” in
Learning to learn. Springer, 1998, pp. 3—-17.

C. Finn, K. Xu, and S. Levine, “Probabilistic model-agnostic meta-
learning,” in NeurIPS, 2018, pp. 9537-9548.

E. Grant, C. Finn, S. Levine, T. Darrell, and T. L. Griffiths, “Recasting
gradient-based meta-learning as hierarchical bayes,” in /CLR, 2018.

L. Franceschi, P. Frasconi, S. Salzo, R. Grazzi, and M. Pontil, “Bilevel
programming for hyperparameter optimization and meta-learning,” in
ICML, 2018, pp. 1563-1572.

Y. Lee and S. Choi, “Gradient-based meta-learning with learned layer-
wise metric and subspace,” in ICML, 2018, pp. 2933-2942.

R. Zhang, T. Che, Z. Grahahramani, Y. Bengio, and Y. Song, “Metagan:
An adversarial approach to few-shot learning,” in NeurIPS, 2018, pp.
2371-2380.

A. Antoniou, H. Edwards, and A. Storkey, “How to train your maml,” in
ICLR, 2019.

K. Lee, S. Maji, A. Ravichandran, and S. Soatto, “Meta-learning with
differentiable convex optimization,” in CVPR, 2019, pp. 10 657-10 665.
S. X. Hu, P. G. Moreno, X. S. Y. Xiao, N. D. Lawrence, G. Obozinski,
A. Damianou, and F. Champs-sur Marne, “Empirical bayes meta-learning
with synthetic gradients,” in /CLR, 2020.

A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. Osindero,
and R. Hadsell, “Meta-learning with latent embedding optimization,” in
ICLR, 2019.

M. Ren, E. Triantafillou, S. Ravi, J. Snell, K. Swersky, J. B. Tenenbaum,
H. Larochelle, and R. S. Zemel, “Meta-learning for semi-supervised few-
shot classification,” in ICLR, 2018.

X. Li, Q. Sun, Y. Liu, Q. Zhou, S. Zheng, T.-S. Chua, and B. Schiele,
“Learning to self-train for semi-supervised few-shot classification,” in
NeurlIPS, 2019, pp. 10276-10 286.

0. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra,
“Matching networks for one shot learning,” in NIPS, 2016, pp. 3630-
3638.

T. Munkhdalai and H. Yu, “Meta networks,” in ICML, 2017, pp. 2554—
2563.

Z. Li, E. Zhou, F. Chen, and H. Li, “Meta-sgd: Learning to learn quickly
for few shot learning,” arXiv, vol. 1707.09835, 2017.

D. Lopez-Paz and M. Ranzato, “Gradient episodic memory for continual
learning,” in NIPS, 2017, pp. 6467-6476.

M. McCloskey and N. J. Cohen, “Catastrophic interference in connec-
tionist networks: The sequential learning problem,” in Psychology of
learning and motivation, 1989, pp. 3—-17.

J. Snell, K. Swersky, and R. S. Zemel, “Prototypical networks for few-
shot learning,” in NIPS, 2017, pp. 4077-4087.

F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. S. Torr, and T. M. Hospedales,
“Learning to compare: Relation network for few-shot learning,” in CVPR,
2018, pp. 1199-1208.

Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in ICML, 2009, pp. 41-48.

A. Shrivastava, A. Gupta, and R. B. Girshick, “Training region-based
object detectors with online hard example mining,” in CVPR, 2016, pp.
761-769.

B. N. Oreshkin, P. Rodriguez, and A. Lacoste, “TADAM: task dependent
adaptive metric for improved few-shot learning,” in NeurIPS, 2018, pp.
719-729.

H. E. Geoffrey and P. C. David, “Using fast weights to deblur old
memories,” in CogSci, 1987, pp. 177-186.

S. Ravi and H. Larochelle, “Optimization as a model for few-shot
learning,” in ICLR, 2017.

H. Li, D. Eigen, S. Dodge, M. Zeiler, and X. Wang, “Finding task-
relevant features for few-shot learning by category traversal,” in CVPR,
2019, pp. 1-10.

H.-J. Ye, H. Hu, D.-C. Zhan, and F. Sha, “Few-shot learning via
embedding adaptation with set-to-set functions,” in CVPR, 2020.

R. Hou, H. Chang, M. Bingpeng, S. Shan, and X. Chen, “Cross attention
network for few-shot classification,” in NeurIPS, 2019, pp. 4005-4016.
N. Dvornik, C. Schmid, and J. Mairal, “Diversity with cooperation:
Ensemble methods for few-shot classification,” in ICCV, 2019, pp. 3723—
3731.

H. Prol, V. Dumoulin, and L. Herranz, “Cross-modulation networks for
few-shot learning,” arXiv, vol. 1812.00273, 2018.

[45]
[46]
[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]
[56]

[57]

[58]
[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

12

W.-Y. Chen, Y.-C. Liu, Z. Kira, Y.-C. Wang, and J.-B. Huang, “A closer
look at few-shot classification,” in ICLR, 2019.

L. Bertinetto, J. F. Henriques, P. H. S. Torr, and A. Vedaldi, “Meta-
learning with differentiable closed-form solvers,” in /CLR, 2019.

V. G. Satorras and J. B. Estrach, “Few-shot learning with graph neural
networks,” in ICLR, 2018.

Y. Liu, J. Lee, M. Park, S. Kim, and Y. Yang, “Learning to propagate
labels: Transductive propagation network for few-shot learning,” in /CLR,
2019.

H. Li, W. Dong, X. Mei, C. Ma, F. Huang, and B. Hu, “Lgm-net: Learning
to generate matching networks for few-shot learning,” in ICML, 2019, pp.
3825-3834.

N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel, “Snail: A simple
neural attentive meta-learner,” in /CLR, 2018.

M. Bauer, M. Rojas-Carulla, J. B. Swiatkowski, B. Scholkopf, and
R. E. Turner, “Discriminative k-shot learning using probabilistic models,”
arXiv, vol. 1706.00326, 2017.

A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. P. Lillicrap,
“Meta-learning with memory-augmented neural networks,” in ICML,
2016, pp. 1842-1850.

Y. Lee and S. Choi, “Gradient-based meta-learning with learned layer-
wise metric and subspace,” in ICML, 2018, pp. 2933-2942.

S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, “Domain adaptation via
transfer component analysis,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 22, no. 2, pp. 199-210, 2011.

J. Yang, R. Yan, and A. G. Hauptmann, “Adapting SVM classifiers to
data with shifted distributions,” in ICDM Workshops, 2007.

Y. Wei, Y. Zhang, J. Huang, and Q. Yang, “Transfer learning via learning
to transfer,” in ICML, 2018, pp. 5085-5094.

A.R. Zamir, A. Sax, W. B. Shen, L. J. Guibas, J. Malik, and S. Savarese,
“Taskonomy: Disentangling task transfer learning,” in CVPR, 2018, pp.
3712-3722.

Q. Sun, B. Schiele, and M. Fritz, “A domain based approach to social
relation recognition,” in CVPR, 2017, pp. 435-444.

Y. Liu, Y. Su, A. Liu, B. Schiele, and Q. Sun, “Mnemonics training:
Multi-class incremental learning without forgetting,” in CVPR, 2020.

E. Perez, F. Strub, H. de Vries, V. Dumoulin, and A. C. Courville, “Film:
Visual reasoning with a general conditioning layer,” in AAAI 2018, pp.
3942-3951.

D. Erhan, Y. Bengio, A. C. Courville, P. Manzagol, P. Vincent, and
S. Bengio, “Why does unsupervised pre-training help deep learning?”
Journal of Machine Learning Research, vol. 11, pp. 625-660, 2010.

J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer,
Z. Wojna, Y. Song, S. Guadarrama, and K. Murphy, “Speed/accuracy
trade-offs for modern convolutional object detectors,” in CVPR, 2017,
pp- 3296-3297.

K. He, G. Gkioxari, P. Dollar, and R. B. Girshick, “Mask R-CNN,” in
ICCV, 2017, pp. 2980-2988.

L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 40, no. 4, pp. 834-848,
2018.

M. Rohrbach, S. Ebert, and B. Schiele, “Transfer learning in a transduc-
tive setting,” in NIPS, 2013, pp. 46-54.

R. Keshari, M. Vatsa, R. Singh, and A. Noore, “Learning structure and
strength of CNN filters for small sample size training,” in CVPR, 2018,
pp- 9349-9358.

S. Qiao, C. Liu, W. Shen, and A. L. Yuille, “Few-shot image recognition
by predicting parameters from activations,” in CVPR, 2018, pp. 7229—
7238.

T. R. Scott, K. Ridgeway, and M. C. Mozer, “Adapted deep embed-
dings: A synthesis of methods for k-shot inductive transfer learning,” in
NeurIPS, 2018, pp. 76-85.

N. Sarafianos, T. Giannakopoulos, C. Nikou, and 1. A. Kakadiaris,
“Curriculum learning for multi-task classification of visual attributes,”
in ICCV Workshops, 2017.

D. Weinshall, G. Cohen, and D. Amir, “Curriculum learning by transfer
learning: Theory and experiments with deep networks,” in /CML, 2018,
pp. 5235-5243.

A. Graves, M. G. Bellemare, J. Menick, R. Munos, and K. Kavukcuoglu,
“Automated curriculum learning for neural networks,” in ICML, 2017,
pp. 1311-1320.

M. P. Kumar, B. Packer, and D. Koller, “Self-paced learning for latent
variable models,” in NIPS, 2010, pp. 1189-1197.

A. Pentina, V. Sharmanska, and C. H. Lampert, “Curriculum learning of
multiple tasks,” in CVPR, 2015, pp. 5492-5500.

[74] L. Jiang, Z. Zhou, T. Leung, L. Li, and L. Fei-Fei, “Mentornet: Learning
data-driven curriculum for very deep neural networks on corrupted
labels,” in ICML, 2018, pp. 2309-2318.

[75] O. Canévet and F. Fleuret, “Large scale hard sample mining with monte
carlo tree search,” in CVPR, 2016, pp. 5128-5137.

[76] B. Harwood, V. Kumar, G. Carneiro, I. Reid, and T. Drummond, “Smart
mining for deep metric learning,” in /CCV, 2017, pp. 2840-2848.

[77] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in CVPR, 2005, pp. 886-893.

[78] T. Munkhdalai, X. Yuan, S. Mehri, and A. Trischler, “Rapid adaptation
with conditionally shifted neurons,” in ICML, 2018, pp. 3661-3670.

[79] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei,
“ImageNet Large Scale Visual Recognition Challenge,” International
Journal of Computer Vision, vol. 115, no. 3, pp. 211-252, 2015.

[80] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
University of Toronto, 2009.

[81] H. Ye, H. Hu, D. Zhan, and F. Sha, “Learning embedding adaptation for
few-shot learning,” arXiv, vol. 1812.03664, 2018.

[82] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift,” in ICML, 2015, pp.
448-456.

[83] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv, vol. 1412.6980, 2014.

Qianru Sun is a Tenure-Track Assistant Pro-
fessor in the School of Information Systems,
Singapore Management University, since 2019.
From 2018 to 2019, she was a Joint Research
Fellow at the National University of Singapore
and the MPI for Informatics. From 2016 to 2018,
she held the Lise Meitner Award Fellowship and
worked at the MPI for Informatics. In 2016, she
obtained her Ph.D. degree from Peking Univer-
sity. In 2014, she was a visiting student at the
University of Tokyo. Her research interests are
computer vision and machine learning that aim to develop efficient
algorithms and systems for visual understanding.

Yaoyao Liu is a Ph.D. student in Computer
Science at Max Planck Institute for Informatics,
working with Prof. Dr. Bernt Schiele and Prof.
Qianru Sun. From 2018 to 2019, he was a re-
search intern at the School of Computing, Na-
tional University of Singapore, working with Prof.
Tat-Seng Chua and Prof. Qianru Sun. Before
this, he obtained his bachelor’s degree at Qiushi
Honors College, Tianjin University. His research
includes few-shot learning, meta learning, incre-
mental learning and image generation.

Zhaozheng Chen is a Ph.D. student in the
School of Information Systems, Singapore Man-
agement University, supervised by Prof. Qianru
Sun. He obtained his bachelor degree at the
School of Computer Science and Technology,
Shandong University in 2019. His research in-
terests are computer vision and machine learn-
ing. Specific efforts have been made in few-shot
image classification, object detection and social
relationship recognition.

13

Tat-Seng Chua is the KITHCT Chair Professor
at the School of Computing, National University
of Singapore. He is also the distinguish Visit-
ing Professor of Tsinghua University. He was
the Founding Dean of the School from 1998-
2000. He is now the Director of a joint research
Center between NUS and Tsinghua (NExT) to
research into big unstructured multi-source mul-
timodal data analytics. He holds a PhD degree
from the University of Leeds, UK, since Feb
1983. Before that, he got his bachelor degree in
the Civil Engineering and Computer Science, University of Leeds, UK,
in Jun 1979. His main research interests are in multimedia information
retrieval and social media analytics. In particular, his research focuses
on the extraction, retrieval and question-answering of text, video and live
media arising from the Web and social networks.

Bernt Schiele has been Max Planck Director
at MPI for Informatics and Professor at Saar-
land University since 2010. He studied com-
puter science at the University of Karlsruhe,
Germany. He worked on his master thesis in
the field of robotics in Grenoble, France, where
he also obtained the “diplome d’etudes appro-
fondies d’'informatique”. In 1994 he worked in the
field of multi-modal human-computer interfaces
at Carnegie Mellon University, Pittsburgh, PA,
USA in the group of Alex Waibel. In 1997 he
obtained his PhD from INP Grenoble, France under the supervision of
Prof. James L. Crowley in the field of computer vision. The title of his
thesis was "Object Recognition using Multidimensional Receptive Field
Histograms”. Between 1997 and 2000 he was postdoctoral associate
and Visiting Assistant Professor with the group of Prof. Alex Pentland
at the Media Laboratory of the Massachusetts Institute of Technology,
Cambridge, MA, USA. From 1999 until 2004 he was Assistant Professor
at the Swiss Federal Institute of Technology in Zurich (ETH Zurich).
Between 2004 and 2010 he was Full Professor at the computer science
department of TU Darmstadt.

